Integrated Power Conversion – The Switched Capacitor Approach

Profs. Seth Sanders and Elad Alon

Vincent Ng, Hanh-Phuc Le, and Mervin John EECS Department, UC Berkeley

Switched Capacitor Power Converters

- Only switches and capacitors
- Can support multiple input or output voltages/terminals
- Simple full integration in standard process
- Works well over a wide power range
 - Single mode, can adjust clock rate
 - No minimum load
- No inductive switching losses
- Stacked devices enable high voltage with low voltage processes
- Simple low freq model as an ideal transformer with Thevenin impedance
 - freq dependent loss and leakage

First Look

Magnetic boost/buck:

- 10-to-1 V conversion, 1A @ 1V
- •S1,S2 rated for V-A product of V*I = 10 V-A
- •Sum up to 20 V-A
- •Need inductor, inductor loss, Inductive switching

- 10-to-1 Ladder Switched-Cap:
- 10-to-1 V conversion, 1A@1V
- 20 switches, each blocks 1V
- •18 switches handle 1/5 A
- •2 switches handle 9/5 A

•V-A product sums up to 36/5 =7.2 V-A •Intrinsic CMOS device convenient

Conduction Loss Comparison

conduction loss, and *no* switching loss impact

Reactive Components

- Fundamental Constraint on dc-dc's:
 - Power scales with energy storage, parameterized by conversion ratio and ripple
- Buck:

$$\frac{P}{f_s E_L} = \frac{4}{1 - D} \bullet \frac{R_L}{(1 + R_L)^2} = 4 \frac{G}{G - 1} \bullet \frac{R_L}{(1 + R_L)^2}$$

- R_L current ripple ratio
- G is current or voltage gain

(Kassakian et al, 1991 text)

- Analogous constraint on input cap
- Need cap at output for bypass
- Buck is "efficient" topology i.e. it has minimally rated inductor
- Example: 2-to-1 V @ 1A; f = 250 MHz
 - 3 turn 500 um diam spiral inductor in 25 um thick Cu with 25 um width and spacing: ~2.5 nH with ~100 mohm dc resistance
 - $R_L = 0.4$
 - 10 nJ/sq.mm peak
 - Eat at least 10% conduction loss.
 - No accounting for ac resistance, substrate loss, interconnect to this superlevel, nor inductive switching loss

Switched Cap

- Fundamental constraint on caps in S-C ckt analogous to that on L,C in buck
- Series-parallel topologies are "efficient" in utilization of cap energy
- Ladder & Dickson not too bad
- Voltage swing (ripple) amounts to charge sharing loss
- Caps:
 - M-I-M and Gate Cap: 5-10 nF/sq.mm @ 2 V: 20-40 nJ/sq.mm
 - Deep trench cap: 200-800 nF/sq.mm: 2 uJ/sq.mm, with 100's MHz ESR corner

"A LOW SERIES RESISTANCE, HIGH DENSITY, TRENCH CAPACITOR FOR HIGH-FREQUENCY APPLICATIONS,"

G. Grivna, S. Shastri, Y. Wu, & W. Cai, PwrSoC 2008, Sept. 2008, Cork

Similar work by others, eg. IPDIA

X-section drawing of "wrap-around" PIP capacitor in lightly doped substrate

Discrete Inductors vs. Discrete Capacitors

Туре	Manufacturer	Capacitance	Dimension	Energy Density
Ceramic Cap	Taiyo-Yuden	22µF @4V	1.6 x 0.8 x 0.8	344
Ceramic Cap	Taiyo-Yuden	1µF@35V	1.6 x 0.8 x 0.8	1196
Tantalum Cap	Vishay	10µF@4V	1.0 x 0.5 x 0.6	533
Tantalum Cap	Vishay	100µF@6.3V	2.4 x 1.45 x 1.1	1037
Electrolytic Cap	Kemet	22µF@16V	7.3 x 4.3 x 1.9	94
Electrolytic Cap	C.D.E	210mF@50V	76φ x 219	172
Shielded SMT Inductor	Coilcraft	10µH @ 0.21A	2.6 x 2.1 x 1.8	0.045
Shielded SMT Inductor	Coilcraft	100µH @ 0.1A	3.4 x 3.0 x 2.0	0.049
Shielded inductor	Coilcraft	170µH @ 1.0A	11 x 11 x 9.5	0.148
Shielded inductor	Murata	1 mH @ 2.4A	29.8φ x 21.8	0.189

 Capacitors have >1000x higher energy density than inductors

Reactives comparison

- Derate inductor by 1000 X
- Explains superior reactive element usage in discrete cap example

Ex. 1: Multi-Core On-Die VR Motivation – Power Reduction

• Clear need for separate supplies to enable per-core power management.

AMD Phenom Quad Core Processor

How to efficiently support multiple voltage rails on the die?

<u>100W - 1V - 100A - 1mΩ</u> (Power ~ 1W/mm²)

Ex. 1: Integrated SC Converter Prototype

- Implemented in 32nm SOI test-chip
- Flying cap: MOS, 32-way interleaved
- Supports 0.6V ~ 1.2V from 2V input

Die photo

Measured Eff. vs. Topologies

Examples with fully integrated native passives

- Capacitor constrained, ref [3] uses series-parallel
- Much higher power density and efficiency than buck
- Limited examples in plain CMOS processes

References: [3] H-P. Le, "A 32nm Fully Integrated Reconfigurable.." *ISSCC*, 2010 [12] J. Lee, "Evaluation of Fully-Integrated..." *IEEE Trans. VLSI*, 2007 J. Wibben, "A High-Efficiency DC–DC Converter..." *JSSC*, April 2008

Extra process steps allowed?

- Very high power density and efficiency expected if deep trench capacitor is used
- Deep trench capacitors are more mature than on-chip magnetic material
- SC converter can use existing decoupling cap as converter component, no extra overhead.

References:[11] L. Chang, "A fully integrated switched capacitor ..." VLSI, 2010[14] J. Dibene, "A 400A fully integrated silicon ..." APEC, 2010

Wireless Sensor Nodes & Energy Harvesting Ex. 2: Self-Powered Active RFID Tag

- *Self-contained* (postage stamp footprint but only mm's thick)
- Fully integrated IC (single die)
- Small solar cell harvests enough energy for 24 hour operation

Power Subsystem Diagram

Architectures: 3:1 to 2:1 adjustable S-C's, clock speed adjusted for wake-up and again for transmit *John, Mervin* p.15

Load Power Requirements

Rail	Clk	State (WkUp , TX)	Peak Load	Avg Load	Max Time	Ripple (mV)	Cl	Eng (uC)	Est Eff
Vdd1	100kHz	Sleep		4uA*	.4s	5mV		1.6	50% *
Vdd2_Osc	400kHz	WkUp	15.5uA	13.5uA	4ms	1mV	20fF	0.06	75%
Vdd2_RX	400kHz	WkUp	120uA	100uA	4ms	50mV	10pF	0.4	75%
Vdd2_TX	20Mhz	ΤХ	8.5mA	7mA	10ms	50mV	20pF	70 -0.7	75%
	\checkmark							\bigvee	

- Efficiency Estimates
 - □ Vdd1 assumes 90% SC, 75% LDO, 2uA Ref/Control
 - □ Vdd2_Osc assumes 85% SC, 90% LDO
 - □ Vdd2_RX assumes 85% SC, no LDO
 - □ Vdd2_TX assumes 80% SC, no LDO
- □ Clock switching frequencies are roughly the minimum for each state
 - □ Clks are down-converted by the controller

Multi-Mode Duty-Cycled Operation

Solar Cell/Battery Power Interface

- □ Solar Cell/Battery Charger
 - □ Comparator, runs at <1Hz to minimize power
 - □ Set battery max threshold (e.g. 1.4V or 1.9V)
 - □ Signals topology choice (i.e. 2:1, 3:1)
 - □ Detect battery state: Dead/Low/OK/Full
 - □ Voltage Reference shared with regulators
 - □ Shunt Regulator
 - 2.5V NMOS, sized to meet max current (250uA) at rated Vbat (1.2-1.9V)
 - Blocking diode limits reverse leakage
 - □ Synchronous rectifier reduce Vd Vbat

Solar cell charges battery

Example 3 – Point-of-Load:12V-to-1.5V Dickson Circuit

Illustrates "tap-changing" technique for line regulation.

V.W. Ng, **A 98% peak efficiency 1.5A 12V-to-1.5V Switched Capacitor dc-dc converter in 0.18 um CMOS technology**, Master Thesis Report, EECS Dept, UC Berkeley, Dec. 2007, also in VLSI 2009 and ECCE 2009.

Expected efficiency over line/load

Regulation Converter model

Test IC realizing complete mode switching and fine scale regulation now in fab

Simulation

Conclusions

- SC converters very convenient for CMOS/ SOC integration
- Excellent utilization of switches and passive devices
- Chip and IC scale capacitors have higher useful energy and power density than inductors
- Ripple managed by extensive interleaving
- Clock scaling, on-line switch scaling, and drive amplitude techniques convenient for low and ultra-low power operation
- Regulation potential challenge

Ex. 3 - Ultra-low-power Conversion in PicoCube Wireless Sensor Node

PicoCube: A 1cm3 Sensor Node Powered by Harvested Energy, 2008 DAC/ISSCC Student Design Contest

PicoCube Power Management Chip Block Diagram

Seeman, Sanders, Rabaey, "An Ultra-Low-Power Power Management IC for Wireless Sensor Nodes," CICC 2007.

PicoCube Converter Topology

Linear Regulators (LDOs) further regulate and reduce ripple on outputs

Hysteretic Feedback

- Regulates output voltage
 - On/off clocking control
 - Thermostat-type control
 - Improves efficiency by reducing f_{sw} for small loads

Converter leaves regulation for only large loads

Converter Performance

Regulation is effective at controlling output voltage and increasing efficiency at low power levels!

Why Not S-C?

- Difficult regulation?
- Not suited for high current/power? X
- Interconnect difficulty for many caps? X
- Voltage rating of CMOS processes? X
- Magnetic-based ckts = higher performance? X
- Ripple?X

SC Analysis: Simplest Example

- Impulsive currents (charge transfers)
- Resistance negligible (assume R = 0)
- This (SSL) impedance is the switching loss!
- Fast Switching Limit (FSL):
 - Constant current through switches
 - Model capacitors as voltage sources (C $\rightarrow \infty$)

$$i = f_{sw} \Delta q = f_{sw} C \Delta v$$

Analysis via Charge Multipliers

Capacitor Charge Multiplier:

 $a_{c,i}^{j} = \frac{\text{charge flow in cap } i, \text{ phase } j}{\text{output charge flow, both phases}}$

Switch Charge Multiplier:

 $a_{r,i} = \frac{\text{charge flow in switch } i, \text{ when on}}{\text{output charge flow, both phases}}$

Analysis via Charge Multipliers

Capacitor Charge Multiplier:

 $a_{c,i}^{j} = \frac{\text{charge flow in cap } i, \text{ phase } j}{\text{output charge flow, both phases}}$

Switch Charge Multiplier:

 $a_{r,i} = \frac{\text{charge flow in switch } i, \text{ when on}}{\text{output charge flow, both phases}}$

Output Impedance ~ Power Loss

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

• An SC converter's power loss is the sum of component energy (power) losses:

$$P_{SSL} = f_{sw} \sum_{capacitors} \Delta q_i \Delta v_i = R_{SSL} i_{OUT}^2 \qquad P_{FSL} = \frac{1}{2} \sum_{switches} R_i (2q_i f_{sw})^2$$

 The converter's output impedance can be determined in terms of just the charge multiplier components:

$$R_{SSL} = \sum_{capacitors} \frac{(a_{c,i})^2}{C_i f_{sw}} \qquad \qquad R_{FSL} = 2 \sum_{switches} R_i (a_{r,i})^2$$

Output Impedance and Optimization

Tellegen's theorem and energy conservation used to find R_{OUT} :

SSL:
$$R_{OUT} = \frac{1}{f_{sw}} \sum_{i \in capacitors} \frac{(a_{c,i}^1)^2}{C_i}$$
 FSL: $R_{OUT} = 2 \sum_{i \in switches} R_i (a_{r,i})^2$

Minimize output impedance while keeping component cost constant:

In the optimal case:

Capacitor voltage ripple and switch voltage drop are proportional to rated voltage Output impedance proportional to the square of the sum of the component V-A produ

Comparing Converters

Need a metric to compare converters of different types!

Example: How much power can we get out of a converter with 10% voltage drop?

$$P_{OUT} = I_{OUT} V_{OUT} = (0.1G_{OUT} V_{OUT}) V_{OUT} = 0.1 \cdot G_{OUT} V_{OUT}^2$$

Power performance related to GV²

We can make a unitless performance metric by comparing converter GV² to component GV²

"Slow-Switching Limit" (SSL) Metric:

$$\frac{G_{OUT}V_{OUT}^2}{f\sum_{caps}C_iv_{c,i(rated)}^2}$$

"Fast-Switching Limit" (FSL) Metric:

 $\frac{G_{OUT}V_{OUT}^2}{\sum G_i v_{r,i(rated)}^2}$

Ex. 3: Microprocessor SC Converter

- A power density of 1 W/mm² is achievable in 65nm process.
- A tiled design improves output ripple and ESR performance
- Creates a scalable IP platform
- Ideal for microprocessor supplies:
 - Ultra-fast transient response
 - Package I/O at higher voltage/lower current
 - Independent core voltage control

Design Optimization Example: 0.4 W/sq.mm

- Representative 0.13um tech
- 2.4-to-1.2V Conversion
- 1 sq mm M-I-M cap (2 nF)
- Losses
 - SSL (main caps)
 - FSL (conduction)
 - Gate cap
 - Cap Bottom plate
 - Junction cap

Switched Cap Take-Aways

- Theoretical performance exceeds magnetic-based converters, and this is being realized in research
- Very simple low power operation reduce clk
- Integration convenient for v. low power app's to v. high current app's
- Moderate (high) voltage capability by stacking devices – triple-well, SOI
- Regulation challenges nominal fixed ratio, but can operate with multiple Taps
- Further on-chip integration via aggressive clk scaling

 Tap Changing for Line Regulation – Feedforward

 Multi-mode Operation for Apps like Voltage Scaling

Output Impedance ~ Power Loss

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

• An SC converter's power loss is the sum of component energy (power) losses:

$$P_{SSL} = f_{sw} \sum_{capacitors} \Delta q_i \Delta v_i = R_{SSL} i_{OUT}^2 \qquad P_{FSL} = \frac{1}{2} \sum_{switches} R_i (2q_i f_{sw})^2$$

 The converter's output impedance can be determined in terms of just the charge multiplier components:

$$R_{SSL} = \sum_{capacitors} \frac{(a_{c,i})^2}{C_i f_{sw}} \qquad \qquad R_{FSL} = 2 \sum_{switches} R_i (a_{r,i})^2$$

Output Impedance and Optimization

Tellegen's theorem and energy conservation used to find R_{OUT} :

SSL:
$$R_{OUT} = \frac{1}{f_{sw}} \sum_{i \in capacitors} \frac{(a_{c,i}^1)^2}{C_i}$$
 FSL: $R_{OUT} = 2 \sum_{i \in switches} R_i (a_{r,i})^2$

Minimize output impedance while keeping component cost constant:

In the optimal case:

Capacitor voltage ripple and switch voltage drop are proportional to rated voltage Output impedance proportional to the square of the sum of the component V-A produ D.H. Wolaver, PhD dissertation,MIT,1969 proves fundamental thms on dc-dc conv.:

G = voltage or current gain

• Switches (*resistors*): $\sum_{k \in dc-active} \bar{v}_k \bar{i}_k \ge \frac{G-1}{G} P_O$ $-\sum_{k} \overline{(v_k - v_k)} \bullet \overline{(i_k - i_k)} \ge \frac{G - 1}{C} P_O$ $k \in ac-active$ Ladder/Dickson are optimal Reactive Elements: $\left|\frac{1}{2}\right| \sum \left|\overline{v_k i_k}\right| \ge \frac{G-1}{G} P_O$ $\sum_{k \in C} V_k q_k + \sum_{k \in I} I_k \lambda_k \ge \frac{1}{f} \frac{G-1}{G} P_O$ Meaning for 2-phase ckts:

Conduction Loss Comparison

conduction loss, and *no* switching loss impact

Regulation Considerations

- Open-Loop Loadline Regulation
 - Droop matching resistive output impedance effective for loadline VR type reg.

Dominant First Order Dynamics	input voltage (2.4 V nom) output voltage (1.2V nom)			L	
Simulation Example: 8-phase 2-to-1 converter	output current	100 mA		10 mA	time

- Tap Changing for Line Regulation Feedforward
- Multi-mode Operation for Apps like Voltage Scaling

Comparative Energy Densities of Representative SMT Components

Type	Manufacturer	Capacitance	Dimensions WxLxH [mm ³]	Energy Density [µJ/mm ³]
Ceramic	Taiyo-Yuden	22 µF @ 4V	1.6x0.8x0.8 (0603)	344
	Taiyo-Yuden	$1 \ \mu F$ @ $35V$	1.6x0.8x0.8 (0603)	1196
Tantalum	Vishay	10 μF @ 4V	1.0x0.5x0.6	533
	Vishay	100 μF @ 6.3V	2.4x1.45x1.1	1037
Electrolytic	Kemet	100 $\mu {\rm F}$ @ 6.3V	7.3x4.3x2.8	45
	Kemet	22 μ F @ 16V	7.3x4.3x1.9	94
	C.D.E.	210 mF @ 50V	$76\phi x219$	172
		(a)		
Type	Manufacture	r Inductance	• Dimensions	Energy Density
			WxLxH [mm ³]	$[\mu J/mm^3]$
Shielded SM7	Coilcraft	$10\mu\mathrm{H}@0.21$	A 2.6x2.1x1.8	0.045
Shielded SMT	Coilcraft	100 $\mu H @ 0.10$	A 3.4x3.0x2.0	0.049
Shielded	Coilcraft	170 $\mu H @ 1.0$	A 11x11x9.5	0.148
Shielded	Murata	1 mH @ 2.4.	A 29.8φx21.8	0.189
		(Ь)		

>1000:1 greater energy density ratio (cap:ind), in small discretes M. Seeman, PhD Dissertation, EECS Dept, UC Berkeley, 2009

Switch Utilization – Conduction Loss Comparison

•Performance compared with switch GV2 metric:

 $G_{OUT}V_{OUT}^2$ $\sum G_i v_{r,i(rated)}^2$

•Magnetic components modeled with *zero* conduction loss, and *no* switching loss impact

Reactive Component Comparison: D.H. Wolaver, PhD dissertation,MIT,1969: fundamental thms on dc-dc conv.:

G = voltage or current gain

Utilization of Reactive Elements:

The Submicron Opportunity

- Rate device by ratio: $G_s V_s^2 / C V_g^2$
 - Essentially an Ft type parameter for a power switch reflecting power gain, exposes opportunity in scaling
- Suggests that we should look for opportunities to build our ckts with scaled CMOS based devices, but:
 - Low voltage rating per device
 - Inadequate metal/interconnect for high current?

Comparison with Other Work

Work	[1]	[2]	[3]	This work [15]
Technology	130nm Bulk	32nm Bulk	45nm SOI	32nm SOI
Topology	2/1 step-up	2/1 step-up	2/1 step- down	2/3, 1/2, 1/3 step-down
Capacitor Technology	МІМ	Metal finger	Deep trench	CMOS oxide
Interleaved	16	32	1	32
C _{out}	400pF (=	0	Yes	0
Converter Area	2.25 mm ²	6678 μm²	1200 µm²	0.378 mm ² (1.4% used for load)
Efficiency (η)	82%	60%	90%	81%
Power density	2.09 mW/mm ²	1.123 W/mm ²	2.185 W/mm ²	0.55 W/mm ²

[1] T. Van Breussegem and M. Steyaert, IEEE Symp. VLSI Circuits, pp. 198 – 199, June, 2009

[2] D. Somasekhar, et .al, IEEE J. Solid-State Circuits, Vol. 45, No. 4, pp. 751 – 758, 2010.

[3] L. Chang, R. Montoye, B. Ji, A. Weger, K. Stawiasz, R. Dennard, IEEE Symp. VLSI Circuits, June, 2010

Charts: 2-1 V & 1-2 V functions

Comparison with Magnetic Designs

V_{IN}°

Ladder-type switchedcap converter

∼ V_{OU}

Series-Parallel SC converter

Boost or Buck converter

Switch sizes optimized for a given conversion ratio *n* for each converter

Test Chip Layout in Triple-Well 0.18 µm CMOS9

- Switches at periphery and numerous bond-pads and bond-wires are to reduce series resistances
- Solder bump reduces die size

Design vs. Measured Performance

	Design	Est.
R _{OUT} @1MHz	210mΩ	287mΩ
Fixed Loss	0.3mW	2.1mW
Freq-dep Loss	7.5mW	5.5mW
Peak eff	95%	93%
Eff at 1A	85%	83%

Contribution to R _{FSL}				
All switches	51mΩ			
On-chip metal	39mΩ			
Capacitor R _{ESR}	15mΩ			
Bond-wire	65mΩ			

POL Package Concept: Flip Chip Packaging Scheme

PCB Area and Cost Comparison

* The TI SC has a much lower conversion ratio of 3:1

- Regulation can be achieved by
 - Changing switching frequency (SSL), or switch modulation (FSL)
 - Changing conversion ratio
- Circuit in figure supports 4 different conversion ratios
 - By tapping at different nodes of the circuit at different phase

Freq mod state machine

If $V_{SG} > 1.3$ $CLK_{TARGET} = 9$ (2.5MHz) else if $V_{SG} > 0.8$ $CLK_{TARGET} = 20$ (1.25MHz) else if $V_{SG} > 0.6$ $CLK_{TARGET} = 100$ (250kHz) else $CLK_{TARGET} = 500$ (0Hz)

Ex. 1:Fully Integrated Power Delivery for High-Performance Digital ICs

