Integrated Power Conversion The Switched Capacitor Approach

Profs. Seth Sanders and Elad Alon

Vincent Ng, Hanh-Phuc Le, and Mervin John EECS Department, UC Berkeley

Switched Capacitor Power Converters

- Only switches and capacitors
- Can support multiple input or output voltages/terminals
- Simple full integration in standard process
- Works well over a wide power range
- Single mode, can adjust clock rate
- No minimum load
- No inductive switching losses
- Stacked devices enable high voltage with low voltage processes
- Simple low freq model as an ideal transformer with Thevenin impedance
- freq dependent loss and leakage

First Look

Magnetic boost/buck:
-10-to-1 V conversion, 1A @ 1V
-S1,S2 rated for V-A product of V*I = 10 V-A
-Sum up to 20 V-A
-Need inductor, inductor loss, Inductive switching

10-to-1 Ladder Switched-Cap:
-10-to-1 V conversion, 1A@1V
-20 switches, each blocks 1V
-18 switches handle 1/5 A
-2 switches handle 9/5 A
-V-A product sums up to $36 / 5=7.2 \mathrm{~V}-\mathrm{A}$
-Intrinsic CMOS device convenient

Conduction Loss Comparison

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

-Performance compared with switch GV² metric:

$$
\frac{G_{O U T} V_{O U T}^{2}}{\sum G_{i} v_{r, i(\text { rated })}^{2}}
$$

-Since converters are bidirectional, graph applies equally to step-down converters
-Magnetic components modeled with zero conduction loss, and no switching loss impact

Reactive Components

- Fundamental Constraint on dc-dc's:
- Power scales with energy storage, parameterized by conversion ratio and ripple
- Buck:

$$
\frac{P}{f_{s} E_{L}}=\frac{4}{1-D} \bullet \frac{R_{L}}{\left(1+R_{L}\right)^{2}}=4 \frac{G}{G-1} \bullet \frac{R_{L}}{\left(1+R_{L}\right)^{2}}
$$

- R_{L} current ripple ratio
- \mathbf{G} is current or voltage gain
- Analogous constraint on input cap
- Need cap at output for bypass
- Buck is "efficient" topology - i.e. it has minimally rated inductor
- Example: 2-to-1 V @ 1A; f = $\mathbf{2 5 0} \mathbf{~ M H z}$
- 3 turn 500 um diam spiral inductor in 25 um thick Cu with 25 um width and spacing: $\sim 2.5 \mathrm{nH}$ with ~ 100 mohm dc resistance
- $R_{L}=0.4$
- $10 \mathrm{~nJ} /$ sq.mm peak
- Eat at least 10% conduction loss.
- No accounting for ac resistance, substrate loss, interconnect to this superlevel, nor inductive switching loss

Switched Cap

- Fundamental constraint on caps in S-C ckt analogous to that on L,C in buck
- Series-parallel topologies are "efficient" in utilization of cap energy
- Ladder \& Dickson not too bad
- Voltage swing (ripple) amounts to charge sharing loss
- Caps:
- M-I-M and Gate Cap: 5-10 nF/sq.mm @ 2 V: 20-40 nJ/sq.mm
- Deep trench cap: 200-800 nF/sq.mm: 2 uJ/sq.mm, with 100's MHz ESR corner

X-section drawing of "wrap-around" PIP capacitor in lightly doped substrate
"A LOW SERIES RESISTANCE, HIGH DENSITY, TRENCH CAPACITOR FOR HIGH-FREQUENCY APPLICATIONS,"
G. Grivna, S. Shastri, Y. Wu, \& W. Cai, PwrSoC 2008, Sept. 2008, Cork

Similar work by others, eg. IPDIA

Discrete Inductors vs. Discrete Capacitors

Type	Manufacturer	Capacitance	Dimension	Energy Density
Ceramic Cap	Taiyo-Yuden	$22 \mu \mathrm{~F} @ 4 \mathrm{~V}$	$1.6 \times 0.8 \times 0.8$	$\mathbf{3 4 4}$
Ceramic Cap	Taiyo-Yuden	$1 \mu \mathrm{~F} @ 35 \mathrm{~V}$	$1.6 \times 0.8 \times 0.8$	$\mathbf{1 1 9 6}$
Tantalum Cap	Vishay	$10 \mu \mathrm{~F} @ 4 \mathrm{~V}$	$1.0 \times 0.5 \times 0.6$	$\mathbf{5 3 3}$
Tantalum Cap	Vishay	$100 \mu \mathrm{~F} @ 6.3 \mathrm{~V}$	$2.4 \times 1.45 \times 1.1$	$\mathbf{1 0 3 7}$
Electrolytic Cap	Kemet	$22 \mu \mathrm{~F} @ 16 \mathrm{~V}$	$7.3 \times 4.3 \times 1.9$	$\mathbf{9 4}$
Electrolytic Cap	C.D.E	$210 \mathrm{mF@} @ \mathrm{~V}$	$76 \varphi \times 219$	$\mathbf{1 7 2}$
Shielded SMT Inductor	Coilcraft	$10 \mu \mathrm{H} @ 0.21 \mathrm{~A}$	$2.6 \times 2.1 \times 1.8$	$\mathbf{0 . 0 4 5}$
Shielded SMT Inductor	Coilcraft	$100 \mu \mathrm{H} @ 0.1 \mathrm{~A}$	$3.4 \times 3.0 \times 2.0$	$\mathbf{0 . 0 4 9}$
Shielded inductor	Coilcraft	$170 \mu \mathrm{H} @ 1.0 \mathrm{~A}$	$11 \times 11 \times 9.5$	$\mathbf{0 . 1 4 8}$
Shielded inductor	Murata	$1 \mathrm{mH} @ 2.4 \mathrm{~A}$	$29.8 \varphi \times 21.8$	$\mathbf{0 . 1 8 9}$

- Capacitors have >1000x higher energy density than inductors

Reactives comparison

- Derate inductor by 1000 X
- Explains superior reactive element usage in discrete cap example

Ex. 1: Multi-Core On-Die VR Motivation - Power Reduction

AMD Phenom Quad Core Processor

- Clear need for separate supplies to enable per-core power management.

How to efficiently support multiple voltage rails on the die?

Ex. 1: Integrated SC Converter Prototype

- Implemented in 32nm SOI test-chip
- Flying cap: MOS, 32-way interleaved
- Supports $0.6 \mathrm{~V} \sim 1.2 \mathrm{~V}$ from 2V input

Die photo

H-P Le et al, ISSCC 2010

Measured Eff. vs. Topologies

Efficiency vs. Vo

Settings:
$\mathrm{Vi}=2 \mathrm{~V}$
$R_{L} \approx 4 \Omega$ at
$\mathrm{Vo}=0.8 \mathrm{~V}$

Examples with fully integrated native passives

- Capacitor constrained, ref [3] uses series-parallel
- Much higher power density and efficiency than buck
- Limited examples in plain CMOS processes

References: [3] H-P. Le, "A 32nm Fully Integrated Reconfigurable.." ISSCC, 2010
[12] J. Lee, "Evaluation of Fully-Integrated..." IEEE Trans. VLSI, 2007
J. Wibben, "A High-Efficiency DC-DC Converter..." JSSC, April 2008

Extra process steps allowed?

- Very high power density and efficiency expected if deep trench capacitor is used
- Deep trench capacitors are more mature than on-chip magnetic material
- SC converter can use existing decoupling cap as converter component, no extra overhead.

References: [11] L. Chang, "A fully integrated switched capacitor ..." VLSI, 2010
[14] J. Dibene, "A 400A fully integrated silicon ..." APEC, 2010

Wireless Sensor Nodes \& Energy Harvesting Ex. 2: Self-Powered Active RFID Tag

- Self-contained (postage stamp footprint but only mm's thick)
- Fully integrated IC (single die)
- Small solar cell harvests enough energy for 24 hour operation

Solar Cell

- $2 \mathrm{~cm} \times 1 \mathrm{~cm}$
- $\mathbf{1 0 \mu W}$ avg (Indoor) • 1 cmx 1 cm
- $\mathrm{V}_{\mathrm{oc}}=2.4 \mathrm{~V}$,

Printed Battery

- $\mathrm{V}_{\text {bat }} \sim 1.1-1.8 \mathrm{~V}$
- Integration w/ substrate

Loads (on Single Die)

- $50 \mu \mathrm{~W}$ RX
- 1 mW TX
- 0.5V Logic
- On-chip power

Power Subsystem Diagram

Architectures: 3:1 to 2:1 adjustable S-C's, clock speed adjusted for wake-up and again for transmit
John, Mervin

Load Power Requirements

Multi-Mode Duty-Cycled Operation

Solar Cell/Battery Power Interface

- Solar Cell/Battery Charger
- Comparator, runs at $<1 \mathrm{~Hz}$ to minimize power
- Set battery max threshold (e.g. 1.4V or 1.9 V)
- Signals topology choice (i.e. 2:1, 3:1)
- Detect battery state: Dead/Low/OK/Full
- Voltage Reference shared with regulators
- Shunt Regulator
- 2.5V NMOS, sized to meet max current (250uA) at rated Vbat (1.2-1.9V)
- Blocking diode limits reverse leakage
- Synchronous rectifier reduce Vd

Vbat

Solar cell charges battery

Example 3 - Point-of-Load:12V-to-1.5V Dickson Circuit

Illustrates "tap-changing" technique for line regulation.

V.W. Ng, A 98\% peak efficiency 1.5A 12V-to-1.5V Switched Capacitor dc-dc converter in 0.18 um CMOS technology, Master Thesis Report, EECS Dept, UC Berkeley, Dec. 2007, also in VLSI 2009 and ECCE 2009.

Expected efficiency over line/load

Regulation Converter model

Test IC realizing complete mode switching and fine scale regulation now in fab

Simulation

Conclusions

- SC converters very convenient for CMOS/ SOC integration
- Excellent utilization of switches and passive devices
- Chip and IC scale capacitors have higher useful energy and power density than inductors
- Ripple managed by extensive interleaving
- Clock scaling, on-line switch scaling, and drive amplitude techniques convenient for low and ultra-low power operation
- Regulation potential challenge

Ex. 3 - Ultra-low-power Conversion in PicoCube Wireless Sensor Node

PicoCube: A 1cm3 Sensor Node Powered by Harvested Energy, 2008 DAC/ISSCC Student Design Contest

PicoCube Power Management Chip Block Diagram

PicoCube Converter Topology

Linear Regulators (LDOs) further regulate and reduce ripple on outputs

Hysteretic Feedback

- Regulates output voltage
- On/off clocking control
- Thermostat-type control
- Improves efficiency by reducing $\mathrm{f}_{\text {sw }}$ for small loads

Converter leaves regulation for only large loads

Converter Performance

Regulation is effective at controlling output voltage and increasing efficiency at low power levels!

Why Not S-C?

- Difficult regulation?
- Not suited for high current/power? X
- Interconnect difficulty for many caps? X
- Voltage rating of CMOS processes? X
- Magnetic-based ckts = higher performance? X
- Ripple? X

SC Analysis: Simplest Example

- Slow Switching Limit (SSL):
- Impulsive currents (charge transfers)
- Resistance negligible (assume $\mathrm{R}=0$)

$$
i=f_{s w} \Delta q=f_{s w} C \Delta v
$$

- This (SSL) impedance is the switching loss!
- Fast Switching Limit (FSL):
- Constant current through switches

$$
i=\frac{1}{4} \frac{1}{R} \Delta v
$$

- Model capacitors as voltage sources ($\mathrm{C} \rightarrow \infty$)

$$
\left(\Delta v=V_{\text {IN }}-V_{\text {OUT }}\right)
$$

Analysis via Charge Multipliers

Capacitor Charge Multiplier:
$a_{c, i}^{j}=\frac{\text { charge flow in cap } i, \text { phase } j}{\text { output charge flow, both phases }}$

Switch Charge Multiplier:
$a_{r, i}=\frac{\text { charge flow in switch } i \text {, when on }}{\text { output charge flow, both phases }}$

Phase 1:
$a_{c}^{1}=\frac{1}{2}$
$a_{r, 1}=\frac{1}{2}$
$a_{r, 3}=-\frac{1}{2}$

Phase 2:
$a_{c}^{2}=-\frac{1}{2}$
$a_{r, 2}=\frac{1}{2}$
$a_{r, 4}=-\frac{1}{2}$

Analysis via Charge Multipliers

Capacitor Charge Multiplier:
$a_{c, i}^{j}=\frac{\text { charge flow in cap } i, \text { phase } j}{\text { output charge flow, both phases }}$

Switch Charge Multiplier:
$a_{r, i}=\frac{\text { charge flow in switch } i \text {, when on }}{\text { output charge flow, both phases }}$

Phase 1:
$a_{c}^{1}=\frac{1}{2}$
$a_{r, 1}=\frac{1}{2}$
$a_{r, 3}=-\frac{1}{2}$

Phase 2:
$a_{c}^{2}=-\frac{1}{2}$
$a_{r, 2}=\frac{1}{2}$
$a_{r, 4}=-\frac{1}{2}$

Output Impedance ~ Power Loss

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

- An SC converter's power loss is the sum of component energy (power) losses:

$$
P_{S S L}=f_{s w} \sum_{\text {capacitiors }} \Delta q_{i} \Delta v_{i}=R_{S S L} i_{O U T}^{2} \quad P_{F S L}=\frac{1}{2} \sum_{\text {switches }} R_{i}\left(2 q_{i} f_{s w}\right)^{2}
$$

- The converter's output impedance can be determined in terms of just the charge multiplier components:

$$
R_{S S L}=\sum_{\text {capacitors }} \frac{\left(a_{c, i}\right)^{2}}{C_{i} f_{s w}}
$$

$$
R_{F S L}=2 \sum_{\text {switches }} R_{i}\left(a_{r, i}\right)^{2}
$$

Output Impedance and Optimization

Tellegen's theorem and energy conservation used to find $\mathrm{R}_{\mathrm{OUT}}$:
SSL: $\quad R_{\text {OUT }}=\frac{1}{f_{s w}} \sum_{i \in \text { capacitors }} \frac{\left(a_{c, i}^{1}\right)^{2}}{C_{i}} \quad$ FSL: $\quad R_{\text {OUT }}=2 \sum_{i \in \text { sswitches }} R_{i}\left(a_{r, i}\right)^{2}$
Minimize output impedance while keeping component cost constant:

Cost constraint

$$
\begin{aligned}
& E_{\text {TOT }}=\frac{1}{2} \sum_{\text {cupacitios }} C_{i} v_{c, i \text { (raede })}^{2} \Longrightarrow C_{i}^{*} \propto\left|\frac{a_{c i,}}{v_{c, i(\text { ruede })}}\right| \\
& A_{\text {Tor }}=\sum_{\text {switces }} G_{r, i(\text { rated })}^{2} \quad \Longrightarrow \quad G_{i}^{*} \propto\left|\frac{a_{r i,}}{v_{r, i \text { rated }}}\right| \\
& R_{\text {SSL }}^{*}=\frac{1}{2 E_{\text {Tor }} f_{\text {sw }}}\left(\sum_{\text {capacaiols }} \mid a_{c, i} v_{\text {ci(} \text { (rated })}\right)^{2} \\
& \left.R_{F S L}^{*}=\frac{2}{A_{\text {TOT }}}\left(\sum_{\text {swicheses }} \mid a_{r, i} v_{r,(\text { ratede })}\right)\right)^{2}
\end{aligned}
$$

Capacitor voltage ripple and switch voltage drop are proportional to rated voltage Output impedance proportional to the square of the sum of the component V-A prodı

Comparing Converters

Need a metric to compare converters of different types!
Example: How much power can we get out of a converter with 10% voltage drop?

$$
P_{\text {OUT }}=I_{\text {OUT }} V_{\text {OUT }}=\left(0.1 G_{\text {OUT }} V_{\text {OUT }}\right) V_{\text {OUT }}=0.1 \cdot G_{\text {OUT }} V_{\text {OUT }}^{2}
$$

Power performance related to GV²
We can make a unitless performance metric by comparing converter GV2 ${ }^{2}$ to component GV^{2}
"Slow-Switching Limit" (SSL) Metric:

$$
\frac{G_{\text {OUT }} V_{\text {OUT }}^{2}}{f \sum_{\text {caps }} C_{i} v_{c, i(\text { rated })}^{2}}
$$

"Fast-Switching Limit" (FSL) Metric:

$$
\frac{G_{O U T} V_{O U T}^{2}}{\sum_{\text {switches }} G_{i} v_{r, i(\text { rated })}^{2}}
$$

Ex. 3: Microprocessor SC Converter

- A power density of $1 \mathrm{~W} / \mathrm{mm}^{2}$ is achievable in 65 nm process.
- A tiled design improves output ripple and ESR performance
- Creates a scalable IP platform
- Ideal for microprocessor supplies:
- Ultra-fast transient response
- Package I/O at higher voltage/lower current
- Independent core voltage control

Design Optimization Example: 0.4 W/sq.mm

- Representative 0.13um tech
- 2.4-to-1.2V Conversion
- 1 sq mm M-I-M cap (2 nF)
- Losses
- SSL (main caps)
- FSL (conduction)
- Gate cap
- Cap Bottom plate
- Junction cap

Switched Cap Take-Aways

- Theoretical performance exceeds magnetic-based converters, and this is being realized in research
- Very simple low power operation - reduce clk
- Integration convenient for v. low power app's to v. high current app's
- Moderate (high) voltage capability by stacking devices - triple-well, SOI
- Regulation challenges - nominal fixed ratio, but can operate with multiple Taps
- Further on-chip integration via aggressive clk scaling
- Tap Changing for Line Regulation Feedforward

- Multi-mode Operation for Apps like Voltage Scaling

Output Impedance ~ Power Loss

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

- An SC converter's power loss is the sum of component energy (power) losses:

$$
P_{S S L}=f_{s w} \sum_{\text {capacitiors }} \Delta q_{i} \Delta v_{i}=R_{S S L} i_{O U T}^{2} \quad P_{F S L}=\frac{1}{2} \sum_{\text {switches }} R_{i}\left(2 q_{i} f_{s w}\right)^{2}
$$

- The converter's output impedance can be determined in terms of just the charge multiplier components:

$$
R_{S S L}=\sum_{\text {capacitors }} \frac{\left(a_{c, i}\right)^{2}}{C_{i} f_{s w}}
$$

$$
R_{F S L}=2 \sum_{\text {switches }} R_{i}\left(a_{r, i}\right)^{2}
$$

Output Impedance and Optimization

Tellegen's theorem and energy conservation used to find $\mathrm{R}_{\mathrm{OUT}}$:
SSL: $\quad R_{\text {OUT }}=\frac{1}{f_{s w}} \sum_{i \in \text { capacitors }} \frac{\left(a_{c, i}^{1}\right)^{2}}{C_{i}} \quad$ FSL: $\quad R_{\text {OUT }}=2 \sum_{i \in \text { sswitches }} R_{i}\left(a_{r, i}\right)^{2}$
Minimize output impedance while keeping component cost constant:

Cost constraint

$$
\begin{aligned}
& E_{\text {TOT }}=\frac{1}{2} \sum_{\text {cupacitios }} C_{i} v_{c, i \text { (raede })}^{2} \Longrightarrow C_{i}^{*} \propto\left|\frac{a_{c i,}}{v_{c, i(\text { ruede })}}\right| \\
& A_{\text {Toot }}=\sum_{\text {swiches }} G_{r, i(\text { rated })}^{2} \quad \Longrightarrow \quad G_{i}^{*} \propto\left|\frac{a_{r, i}}{v_{r, i \text { rueae }}}\right| \\
& R_{\text {SSL }}^{*}=\frac{1}{2 E_{\text {Tor }} f_{\text {sw }}}\left(\sum_{\text {capacaiols }} \mid a_{c, i} v_{\text {ci(} \text { (rated })}\right)^{2} \\
& \left.R_{F S L}^{*}=\frac{2}{A_{\text {TOT }}}\left(\sum_{\text {swicheses }} \mid a_{r, i} v_{r,(\text { ratede })}\right)\right)^{2}
\end{aligned}
$$

Capacitor voltage ripple and switch voltage drop are proportional to rated voltage Output impedance proportional to the square of the sum of the component V-A prodı

D.H. Wolaver, PhD dissertation,MIT,1969 proves fundamental thms on dc-dc conv.:

$G=$ voltage or current gain

- Switches (resistors):
$-\sum_{k \in d c-a c t i v e} \bar{v}_{k} \bar{i}_{k} \geq \frac{G-1}{G} P_{O}$

$$
\left.-\sum_{k \in a c-a c t i v e} \overline{\left(v_{k}-\bar{v}_{k}\right)}\right) \cdot \overline{\left(i_{k}-\bar{i}_{k}\right)} \geq \frac{G-1}{G} P_{O}
$$

- Ladder/Dickson are optimal
- Reactive Elements:

Meaning for 2-phase ckts:

$$
\begin{aligned}
\frac{1}{2} \sum_{k \in \text { reactive }}\left|\overline{v_{k} i_{k}}\right| & \geq \frac{G-1}{G} P_{O} \\
\sum_{k \in C} V_{k} q_{k}+\sum_{k \in L} I_{k} \lambda_{k} & \geq \frac{1}{f} \frac{G-1}{G} P_{O}
\end{aligned}
$$

Conduction Loss Comparison

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

-Performance compared with switch GV² metric:

$$
\frac{G_{O U T} V_{O U T}^{2}}{\sum G_{i} v_{r, i(\text { rated })}^{2}}
$$

-Since converters are bidirectional, graph applies equally to step-down converters
-Magnetic components modeled with zero conduction loss, and no switching loss impact

Regulation Considerations

- Open-Loop Loadline Regulation
- Droop matching resistive output impedance effective for loadline VR type reg.

- Tap Changing for Line Regulation - Feedforward
- Multi-mode Operation for Apps like Voltage Scaling

Comparative Energy Densities of Representative SMT Components

Type	Manufacturer	Capacitance	Dimensions WxLxH $\left[\mathrm{mm}^{3}\right]$	Energy Density $\left[\mu \mathrm{J} / \mathrm{mm}^{3}\right.$]
Ceramic	Taiyo-Yuden	$22 \mu \mathrm{~F} @ 4 \mathrm{~V} \quad 1$	$1.6 \times 0.8 \times 0.8$ (0603)	$\left(\begin{array}{c} 344 \\ 1196 \\ 533 \\ 1037 \end{array}\right)$
	Taiyo-Yuden	$1 \mu \mathrm{~F} @ 35 \mathrm{~V} \quad 1$	$1.6 \times 0.8 \times 0.8$ (0603)	
Tantalum	Vishay	$100 \mu \mathrm{~F} @ 6.3 \mathrm{~V}$	$1.0 \times 0.5 \times 0.6$	
	Vishay		$2.4 \times 1.45 \times 1.1$	
Electrolytic	Kemet	$100 \mu \mathrm{~F} @ 6.3 \mathrm{~V}$	$7.3 \times 4.3 \times 2.8$	
	Kemet		$7.3 \times 4.3 \times 1.9$	94
	C.D.E.	210 mF @ 50 V (a)	$76 \$ \times 219$	172
Type	Manufacturer	Inductance	Dimensions	Energy Density
			WxLxH $\left[\mathrm{mm}^{3}\right]$	$\left[\mu \mathrm{J} / \mathrm{mm}^{3}\right]$
Shielded SMT	Coilcraft	$10 \mu \mathrm{H} @ 0.21 \mathrm{~A}$	A $2.6 \times 2.1 \times 1.8$	0.045
Shielded SMT	Coilcraft	$100 \mu \mathrm{H} ¢ 0.10 \mathrm{~A}$	A $\quad 3.4 \times 3.0 \times 2.0$	0.049
Shielded	Coilcraft	$170 \mu \mathrm{H} @ 1.0 \mathrm{~A}$	A $11 \times 11 \times 9.5$	0.148
Shielded	Murata	$1 \mathrm{mH} @ 2.4 \mathrm{~A}$ (b)	- $29.8 \phi \times 21.8$	0.189

>1000:1 greater energy density ratio (cap:ind), in small discretes M. Seeman, PhD Dissertation, EECS Dept, UC Berkeley, 2009

Switch Utilization - Conduction Loss Comparison

-Performance compared with switch GV2 metric:
-Magnetic components modeled with zero conduction loss, and no switching loss impact

Reactive Component Comparison:

D.H. Wolaver, PhD dissertation,MIT,1969:

fundamental thms on dc-dc conv.:
$G=$ voltage or current gain

Utilization of Reactive Elements:

SC: $0.02 \bullet \frac{G_{\text {OUT }} V_{\text {OUT }}^{2}}{f \sum_{\text {caps }} C_{i} v_{c, i(\text { rated })}^{2}} \quad$ Versus \quad Mag: $0.001 \bullet \frac{P_{\text {OUT }}}{f \bullet \frac{1}{2} L I^{2}}$
$\frac{G_{O U T} V_{O U T}^{2}}{f \sum_{\text {caps }} C_{i} v_{c, i(\text { rated })}^{2}}$

The Submicron Opportunity

- Rate device by ratio: $G_{s} V_{s}^{2} / C V_{g}^{2}$
- Essentially an Ft type parameter for a power switch reflecting power gain, exposes opportunity in scaling
- Suggests that we should look for opportunities to build our ckts with scaled CMOS based devices, but:
- Low voltage rating per device
- Inadequate metal/interconnect for high current?

Comparison with Other Work

Work	[1]	[2]	[3]	This work [15]
Technology	130nm Bulk	32nm Bulk	45nm SOI	32nm SOI
Topology	2/1 step-up	2/1 step-up	2/1 stepdown	$2 / 3,1 / 2,1 / 3$ step-down
Capacitor Technology	MIM	Metal finger	Deep trench	CMOS oxide
Interleaved	16	32	1	32
$\begin{aligned} & \text { Phases } \\ & \text { C } \end{aligned}$	$400 \mathrm{pF}(=$	0	Yes	0
Converter Area	$\begin{gathered} \left.\mathrm{C}_{\mathrm{fly}}\right) \\ 2.25 \mathrm{~mm}^{2} \end{gathered}$	$6678 \mathrm{~mm}^{2}$	$1200 \mu \mathrm{~m}^{2}$	$0.378 \mathrm{~mm}^{2}$ (1.4\% used for load)
Efficiency (${ }^{\text {) }}$				81\%
Power density	2.09 W/mm ${ }^{2}$	1.123	2.185	0.55 W/mm ${ }^{2}$

[1] T. Van Breussegem and M. Steyaert, IEEE Symp. VLSI Circuits, pp. 198 - 199, June, 2009
[2] D. Somasekhar, et .al, IEEE J. Solid-State Circuits, Vol. 45, No. 4, pp. 751 - 758, 2010.
[3] L. Chang, R. Montoye, B. Ji, A. Weger, K. Stawiasz, R. Dennard, IEEE Symp. VLSI Circuits, June, 2010

Charts: 2-1 V \& 1-2 V functions

- H-P Le, ISSCC
2010, 32 nm
SOI
Breussegem,
VLSI 09, 130
nm bulk
© Somasekhar,
VLSI 09, 32 nm
bulk
Projected, 400
fF/sq.um, 32
nm tech

Comparison with Magnetic Designs

Ladder-type switchedcap converter

Series-Parallel SC converter

Transformer-bridge converter

Switch sizes optimized for a given conversion ratio \boldsymbol{n} for each converter

Test Chip Layout in Triple-Well $0.18 \mu \mathrm{~m}$ CMOS9

- Switches at periphery and numerous bond-pads and bond-wires are to reduce series resistances
- Solder bump reduces die size

Design vs. Measured Performance

95	Measured Efficiency vs Load		Design	Est.
	- 1 MHz mea	$\mathrm{R}_{\text {out }}$ @1MHz	$210 \mathrm{~m} \Omega$	$287 \mathrm{~m} \Omega$
	- 100kHz mea	Fixed Loss	0.3 mW	2.1 mW
$\overbrace{}^{90}$		Freq-dep Loss	7.5 mW	5.5 mW
		Peak eff	95\%	93\%
.		Eff at 1A	85\%	83\%
密		Contribution to $\mathrm{R}_{\text {FSL }}$		
Ш 80		All switches		$\mathrm{m} \Omega$
		On-chip metal		$\mathrm{m} \Omega$
75		Capacitor $\mathrm{R}_{\text {ESR }}$		$\mathrm{m} \Omega$
	110100	Bond-wire		$\mathrm{m} \Omega$
	Load current (mA)			

POL Package Concept: Flip Chip Packaging Scheme

PCB Area and Cost Comparison

PCB area of passives

Cost of passives

* The TI SC has a much lower conversion ratio of 3:1

Regulation

- Regulation can be achieved by
- Changing switching frequency (SSL), or switch modulation (FSL)
- Changing conversion ratio
- Circuit in figure supports 4 different conversion ratios
- By tapping at different nodes of the circuit at different phase

Freq mod state machine

```
If }\mp@subsup{V}{SG}{}>1.
    CLK
    (2.5MHz)
else if }\mp@subsup{V}{SG}{}>0.
    CLK
    (1.25MHz)
else if }\mp@subsup{V}{SG}{}>0.
    CLK
    (250kHz)
else
    CLK
    (OHz)
```


Ex. 1:Fully Integrated Power Delivery for High-Performance Digital ICs

Use fully integrated reconfigurable Switched-Capacitor DC-DC converter

ISSCC 2010
82\% Effi. at $0.55 \mathrm{~W} / \mathrm{mm}^{2}$ 3 reconf. topologies

